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Most mathematical studies on expanding populations have fo-
cused on the rate of range expansion of a population. However, the
genetic consequences of population expansion remain an under-
studied body of theory. Describing an expanding population as
a traveling wave solution derived from a classical reaction-diffu-
sionmodel, we analyze the spatio-temporal evolution of its genetic
structure. We show that the presence of an Allee effect (i.e., a
lower per capita growth rate at low densities) drastically modifies
genetic diversity, both in the colonization front and behind it. With
an Allee effect (i.e., pushed colonization waves), all of the genetic
diversity of a population is conserved in the colonization front. In
the absence of an Allee effect (i.e., pulled waves), only the furthest
forward members of the initial population persist in the coloniza-
tion front, indicating a strong erosion of the diversity in this popu-
lation. These results counteract commonly held notions that the
Allee effect generally has adverse consequences. Our study contri-
butes new knowledge to the surfing phenomenon in continuous
models without random genetic drift. It also provides insight into
the dynamics of traveling wave solutions and leads to a new inter-
pretation of themathematical notions of pulled and pushedwaves.

Rapid increases in the number of biological invasions by alien
organisms (1) and the movement of species in response to

their climatic niches shifting as a result of climate change have
caused a growing number of empirical and observational studies
to address the phenomenon of range expansion. Numerous math-
ematical approaches and simulations have been developed to
analyze the processes of these expansions (2, 3). Most results
focus on the rate of range expansion (4), and the genetic conse-
quences of range expansion have received little attention from
mathematicians and modelers (5). However, range expansions
are known to have an important effect on genetic diversity (6, 7)
and generally lead to a loss of genetic diversity along the expan-
sion axis due to successive founder effects (8). Simulation studies
have already investigated the role of the geometry of the invaded
territory (9–11), the importance of long-distance dispersal and
the shape of the dispersal kernel (12–14), the effects of local
demography (15), or existence of a juvenile stage (13). Further
research is needed to obtain mathematical results supporting
these empirical and simulation studies, as such results could
determine the causes of diversity loss and the factors capable
of increasing or reducing it.

In a simulation study using a stepping-stone model with a lat-
tice structure, Edmonds et. al (16) analyzed the fate of a neutral
mutation present in the leading edge of an expanding population.
Although in most cases the mutation remains at a low frequency
in its original position, in some cases the mutation increases in
frequency and propagates among the leading edge. This phenom-
enon is described as “surfing” (15). Surfing is caused by the strong
genetic drift taking place on the edge of the population wave (5,
17) because the local growth rate of the low density individuals on
the edge of the expanding wave is typically higher than the growth
rate for the bulk of the population (15). The existence of surfing
events has a significant impact on the subsequent genetic patterns
of the population after expansion (18) and their occurrence can

be influenced by the existence of long-distance dispersal events
(14), local demography (15), or selection (11).

The existence of an Allee effect is another critical factor affect-
ing the dynamics of the leading edge of a population expansion.
The Allee effect is characterized by a decrease in the per capita
growth rate at low densities, and this can be due to increased
damage from bioagressors, increased mortality due to interspeci-
fic competition or reduced fitness due to suboptimal mating
opportunities (19). This dynamic has been observed in many
populations (20–22). The Allee effect is known to affect the rate
of spread of a population (23, 24) and is expected to modify
genetic drift on the edge of that population. Using simulation
models with stochastic demography, Hallatschek and Nelson (25)
provided a numerical analysis of the surfing phenomenon in the
presence of an Allee effect. More precisely, using a backward-
time approach, they analyzed the initial position of successful
surfers in the wave. Significant differences in the probability dis-
tributions of the successful surfers were found between popula-
tions that experience an Allee effect and populations that do not.
Using the framework of reaction-diffusion equations, they were
able to connect their numerical findings to analytical formulas.
Among other things, they concluded that surfing is not possible
in deterministic reaction-diffusion, Kolmogorov–Petrovsky–Pis-
kunov (KPP) type models (26, 27) (i.e., without an Allee effect).
The goal of our study is to investigate how the Allee effect de-
termines genetic diversity in a colonization front and to do so in a
context broader than that considered in the surfing phenomenon.

Following the framework provided in (25) and (28), we focus
on one-dimensional reaction-diffusion equations of the form:

∂tu ¼ ∂xxuþ f ðuÞ; t > 0; x ∈ ð−∞;þ∞Þ; [1]

where u ¼ uðt; xÞ is the density of the population (of genes or
haploid individuals) at time t and space position x. It evolves in
time under the joint effects of local dispersal accounted for by the
diffusion term and local reproduction described by the growth
function f . Since Skellam’s work (29), these models have com-
monly been used to explore population range expansions. How-
ever, little is known regarding the evolution of the inside structure
of these models’ solutions, that is, the dynamics of the compo-
nents through which the structure of a population is determined.

Under some assumptions on the function f and the initial
population u0, the solutions of Eq. 1 converge to traveling wave
solutions (27, 30, 31). These solutions describe the invasion of the
unoccupied region with a constant speed c and a constant density
profile U, and the population density can be written as uðt; xÞ ¼
Uðx − ctÞ. In this study, we focus on such traveling wave solutions,
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and our aim is to study the evolution of their inside structure de-
pending on the growth term f .

Assuming that a population is initially composed of several
neutral fractions, we provide a mathematical analysis of the spa-
tio-temporal evolution of these fractions (i.e., of the proportion
of each fraction at each position in the colonization front). Our
mathematical analysis of the models investigates the following
questions: (i) how do the proportions of the different fractions
evolve in a traveling wave generated by a classical KPP model;
(ii) does the presence of an Allee effect modify the proportions
of the different fractions in a traveling wave (i.e., does it enhance
or reduce diversity in the colonization front); and (iii) do the pro-
portions of the different fractions at a particular location evolve
rapidly after the traveling wave has passed (i.e., is the diversity
determined by the front durable).

The Model, Main Hypotheses, and Classical Results
We assume that the population is composed of genes or haploid in-
dividuals. Its total density u satisfies Eq. 1. This population is made of
several neutral fractions vk; see Fig. 1. In particular, at time t ¼ 0:

u0ðxÞ ≔ uð0; xÞ ¼ ∑
k≥1

vk0 ðxÞ; with vk0 ≥ 0 for all k ≥ 1.

We assume that the genes (or the individuals) in each fraction only
differ by their position and their allele (or their label), while their
dispersal and growth capabilities are the same as the total population
u, in the sense that the density of each fraction satisfies an equation
of the form:�

∂tvk ¼ ∂xxvk þ vkgðuÞ; t > 0; x ∈ R;
vkð0; xÞ ¼ vk0 ðxÞ; x ∈ R;

[2]

with gðuÞ ¼ f ðuÞ∕u. Thus, the per capita growth rate gðuÞ of each
fraction vk is equal to the per capita growth rate of the total
population. Also note that each fraction vk is positive everywhere
at positive times, and that, as expected, the sum of the fraction den-
sities satisfies Eq. 1. Given the uniqueness of the solution to the
initial value problem associated with Eq. 1, this sum is equal
to uðt; xÞ.

Note that for diploid populations, the system in Eq. 2, which
governs the dynamics of the allelic densities, can also be derived
from a weighted sum of the equations governing the genotype
densities, such as those given in ref. 30.

Growth Functions. We assume that f is continuous, continuously
differentiable, and vanishes at 0 and 1, with f 0ð1Þ < 0. Under
the above assumptions, 0 and 1 are stationary states of the main
Eq. 1. When u ¼ 0, the species is not present, and when u ¼ 1,
the environment is fully colonized.

The first type of growth functions that we consider are of
KPP type.

Definition 1: A growth function is said to be of KPP type if, in
addition to the above assumptions, it satisfies

0 < f ðuÞ ≤ f 0ð0Þu; for all u ∈ ð0; 1Þ: [3]

Under this assumption, the per capita growth rate gðuÞ ¼
f ðuÞ∕u always remains smaller than its value at u ¼ 0 [i.e., f 0ð0Þ].
This means that higher densities result in lower individual repro-
ductive success (i.e., that the individuals compete with each other
and that there is no cooperation between them). A typical example
of function f satisfying the KPP assumption is the logistic function
defined by f ðuÞ ¼ uð1 − uÞ, which was used in refs. 25 and 28.

The second type of growth function that we consider is a
cubical polynomial that does not satisfy the KPP assumption.

Definition 2: A growth function is said to be of the Allee type if it
satisfies, for some ρ ∈ ð0; 1∕2Þ,

f ðuÞ ¼ uð1 − uÞðu − ρÞ for all u ∈ ð0; 1Þ: [4]

In this case, the per capita growth rate gðuÞ ¼ f ðuÞ∕u is nega-
tive for low values of the density u, which corresponds to a strong
Allee effect. The parameter ρ corresponds to the so-called “Allee
threshold,” below which the growth rate becomes negative (23,
30, 32). Other functions f could have been considered that may
not be cubical polynomials and have an f 0ð0Þ value that is still
negative. We chose to address only functions of the type in
Eq. 4 for the sake of simplicity, as the profile of the unique global
front is known and the subsequent calculations are explicit.

Traveling Wave Solutions. The traveling wave solutions satisfy
uðt; xÞ ¼ Uðx − ctÞ, for the speeds c > 0 precised below. Substitut-
ing this expression into Eq. 1, it follows that the profiles U of the
traveling waves satisfy the following ordinary differential equation:

U 0 0 þ cU 0 þ f ðUÞ ¼ 0 inR; Uð−∞Þ ¼ 1; and Uðþ∞Þ ¼ 0.

Such traveling waves propagate from left to right and describe the
invasion of an environment where the species is not present with a
constant speed c and a constant density profile U.

The existence of such solutions has been proved in refs. 26 and
27 for KPP growth functions and in ref. 30 and 31 for growth func-
tions of the Allee type. These studies show that, starting from a
step function (u0ðxÞ ¼ 1 for x ≤ 0 and u0ðxÞ ¼ 0 for x > 0), the
solution of Eq. 1 converges to a traveling wave. In the KPP case,
this traveling wave propagates at the speed c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
f 0ð0Þp

(27).
Under the Allee assumption, the profile U (up to shifts in x)

and the speed c of the traveling wave are known:

UðxÞ ¼ 1

1þ ex∕
ffiffi
2

p and c ¼ 1 − 2ρffiffiffi
2

p : [5]

In the KPP case, the traveling wave with minimal speed
c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
f 0ð0Þp

propagates at the same speed as the solution of
the linear equation

∂tu ¼ ∂xxuþ f 0ð0Þu: [6]

This corresponds to a pulled wave (33), where the wave is
pulled by the leading edge of the population distribution. Under
the KPP assumption, other waves propagating at speeds
c > 2

ffiffiffiffiffiffiffiffiffiffiffi
f 0ð0Þp

are known to exist, and Stokes (33) defines them as
being pulled. When the Allee effect is present, there is a unique tra-
veling wave, given by Eq. 5. Its speed c ¼ ð1 − 2ρÞ∕ ffiffiffi

2
p

is strictly
positive, whereas the solution of the linear Eq. 6 converges uniformly
to 0. The corresponding wave is called a pushed wave (33, 34).

The results shown in the next sections provide an intuitive ex-
planation of these notions of pushed and pulled waves.

Fig. 1. A schematic representation of a traveling wave solution uðt; xÞ of
Eq. 1 made of six fractions. Each fraction is depicted with a different color
and with a thickness that corresponds, at each position x, to the density
vkðxÞ of the fraction.
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Results: How the Fractions Propagate
We consider an arbitrarily chosen fraction vk that satisfies Eq. 2—
we call it v in the sequel—and we study the evolution of the den-
sity vðt; xÞ. From our assumptions, the total population uðt; xÞ sa-
tisfies that uðt; xÞ ¼ Uðx − ctÞ. Thus, the density of the fraction
satisfies

∂tv ¼ ∂xxvþ vgðUðx − ctÞÞ; t > 0; x ∈ R: [7]

Moreover, when t ¼ 0, u0ðxÞ ¼ UðxÞ and v0ðxÞ ¼ vð0; xÞ corre-
sponds to a fraction of the quantity UðxÞ, thus 0 ≤ v0ðxÞ ≤
UðxÞ for all x ∈ R: From the stability properties of the traveling
waves, considering the initial condition u0ðxÞ ¼ UðxÞ is equiva-
lent to defining the fractions inside a population that has already
reached its stationary profile. Biologically, this means that we
consider the spatio-temporal evolution of the diversity distributed
at a given time in an ongoing wave of colonization.

Using the properties of the growth function f and the subse-
quent properties of the profile U and of the speed c, we can de-
scribe the evolution of v in a moving interval with speed c, as well
as behind the waves.

Evolution of the Density v of the Fraction in a Moving Frame. In this
section, we study the evolution of the density v of the fraction in
an interval moving at the same speed c as the total population.
Two situations may occur herein. Either the fraction is able to
follow the total population and spreads with the same speed c,
or the fraction is not able to follow the total population.

Our first result is concerned with the KPP case and is valid
under general assumptions on the initial density v0 of the fraction.
These assumptions include the particular case of compactly
supported initial fractions [i.e., v0ðxÞ ¼ 0 outside a bounded set]
and are satisfied by all the fractions depicted in Fig. 1, with the
exception of the rightmost (light gray) one.

Result 1a (KPP case; see proof in Appendix A). If the initial density v0
of the fraction converges to 0 faster than U as x → þ∞,* then, for
anyA ∈ R, the density vðt; xÞ of the fraction converges (as t → ∞) to
0 uniformly in the moving half-line ½Aþ ct;∞Þ.

This result shows that under the KPP assumption any fraction v
whose initial density v0ðxÞ is 0 for large x cannot expand with the
total population.

It was stated in ref. 25 that gene surfing was not possible for the
logistic growth function f ðuÞ ¼ uð1 − uÞ. If by gene surfing we
mean that the wave tends to be made of a single fraction, then
our result also shows that surfing is not possible for fractions
with compactly supported initial densities. However, the surfing
of fractions that are not initially compactly supported can occur,
even with logistic growth functions. Consider the rightmost frac-
tion vr (the light gray fraction in Fig. 1): At t ¼ 0, vr0 ¼ U · 1½α;∞Þ,
where 1½α;∞Þ denotes the indicator function of the interval ½α;∞Þ
for some α ∈ R. The fraction corresponding to the remaining part
of the population satisfies vl0 ¼ U · 1ð−∞;αÞ as well as the assump-
tion of Result 1a. Because uðt; xÞ ¼ Uðx − ctÞ ¼ vlðt; xÞþ
vrðt; xÞ, this result shows that vrðt; xÞ converges to Uðx − ctÞ in
any moving half-line ½Aþ ct;∞Þ This means that the fraction
vr manages to “surf” on the wave.

Result 2a (Allee case; see proof in Appendix B). For any A ∈ R the
density v of the fraction converges (as t → ∞) to a proportion p½v0�
of the total population uðt; xÞ in the moving half-line ½Aþ ct;∞Þ
that is vðt; xÞ − p½v0�uðt; xÞ ¼ vðt; xÞ − p½v0�Uðx − ctÞ → 0 as

t → ∞, uniformly in ½Aþ ct;∞Þ. The proportion p½v0� can be com-
puted explicitly:

p½v0� ¼
R þ∞
−∞ v0ðxÞUðxÞecxdxR þ∞

−∞ U 2ðxÞecxdx ∈ ½0; 1�: [8]

This result shows that any fraction v with a nonzero initial den-
sity v0 follows the total population. Moreover, in the interval
moving with speed c, the profile vðt; ctþ ·Þ of the fraction tends
to resemble the profile U of the total population, with a scaling
factor p½v0� dependent on the initial density v0. Note that the in-
tegral terms in the expression of p are well-defined, and this can
be easily checked using the formulas in Eq. 5. This would not be
true under the KPP assumption (30).

The formula in Eq. 8 provides precise information regarding
the origin of the individuals that compose the wave at large times.
Let us again consider the “leftmost” fraction defined by
vl0 ¼ U · 1ð−∞;αÞ for α ∈ R. The asymptotic proportion of this
fraction in any moving half-line with speed c is pðαÞ ≔ p½vl0�. Dif-
ferentiating pðαÞ with respect to α we obtain a quantity p 0ðαÞ that
can be interpreted as the relative contribution to the wave of the
individuals with an initial position α:

p 0ðαÞ ¼ U 2ðαÞecα∕ð
Z þ∞

−∞
U 2ðxÞecxdxÞ:

Using a similar formula, and replacing U with the solution of a
stochastic simulation model incorporating an Allee effect, ref. 25
obtained a good fit of the probability of gene surfing in their model.

Here, the density profile U is known explicitly. Using the for-
mula in Eq. 5, we observe that p 0ð�∞Þ ¼ 0 and that p 0 reaches a
unique maximum at

αmax ¼
ffiffiffi
2

p
ln
�
1 − 2ρ
1þ 2ρ

�
: [9]

Interestingly, αmax is a decreasing function of ρ, with αmaxð0Þ ¼ 0,
corresponding to the position of the inflexion point of the profile
U , and αmaxð1∕2Þ ¼ −∞. This formula emphasizes the advanta-
geous role of the Allee effect for the fractions situated deep in the
core of the population; the stronger the Allee effect, the more
these individuals will contribute to the wave.

Evolution of the Density v of the Fraction Behind the Wave. The aim
of the previous section was to analyze the behavior of an arbitra-
rily chosen fraction in a moving interval ½Aþ ct;∞Þ with speed c
equal to the spreading speed of the total population. Here, we
analyze the evolution of the density of the fraction in the remain-
ing part of the space: ð−∞; Aþ ctÞ. We assume that the initial
density v0ðxÞ of the fraction converges to 0 as x → −∞.

Result 1b (KPP case; see proof in Appendix C). If the initial density v0
of the fraction converges to 0 faster than U as x → þ∞,* then, for
any A ∈ R, the density of the fraction converges (as t → ∞) to 0
uniformly in the moving half-line ð−∞; Aþ ctÞ.

This result, together with Result 1a, implies that the density
vðt; xÞ of the fraction converges to 0 uniformly in R as t → ∞.
Thus, under the KPP assumption, any compactly supported frac-
tion will vanish in the sense that, at large times, its density be-
comes negligible at any point of the space, as a result of dilution.

Result 2b (Allee case, see proof in Appendix D). For any speed c 0 ∈
ð0; cÞ and anyA ∈ R, the density vðt; xÞ of the fraction converges (as
t → ∞) to the proportion p½v0�uðt; xÞ in a set of the form
ðc 0t; Aþ ctÞ. Besides, for any ε > 0 and B > 0, p½v0�∕2 − ε <
vðt; xÞ < p½v0� þ ε in the set ½−B; Aþ ctÞ for t > 0 and −A > 0
large enough.

Result 2a shows that, in any moving half-line ½Aþ ct;∞Þ, the
density v of the fraction tends to resemble a proportion p½v0� of
the total population u when the Allee effect is present. Result 2b

*This means that ∫ þ∞
0 e

cy
2 v0ðyÞdy < ∞. Note that if v0 is compactly supported, then vðt; xÞ

converges to 0 faster than UðxÞ for each t ≥ 0, see the formula in Eq. 10 in Appendix A.
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shows that this is actually true in ðc 0t;þ∞Þ, for any c 0 > 0. This
result also indicates that, in the reference frame, the fraction v
propagates to the right with the same speed as the total popula-
tion, but also diffuses in the opposite direction, given that B can
be chosen arbitrarily large. For any initially compactly supported
fraction v, the fraction centroid can be defined for t > 0 as the
unique point x̄ðtÞ satisfying ∫ x̄ðtÞ

−∞vðt; yÞdy ¼ ∫ þ∞
x̄ðtÞ vðt; yÞdy. Re-

sult 2b shows that x̄ðtÞ cannot spread faster that ðc 0 þ cÞ∕2,
for all c 0 > 0. This means that the fraction centroid moves to
the right at a speed less or equal to c∕2.

Numerical Computations
Our analytical results were derived for a front-like initial condi-
tion u0ðxÞ ¼ UðxÞ, corresponding to an already established tra-
veling wave. We investigate numerically whether these results
remain qualitatively true when u0 is a compactly supported step
function (Fig. 2A) that has not yet reached a traveling wave profile.
We assume that the population is made ofN ¼ 8 fractions vk, which
satisfy, at t ¼ 0, v10 ¼ 1ð−40;−21�, vk0 ¼ 1ðxk−1;xk� for k ¼ 2;…; N for
the sequence x1 < x2 < … < xN ¼ 0 of evenly spaced points. We
numerically solved Eq. 2 with KPP and Allee growth terms. In both
cases, we observed that the solution uðt; xÞ rapidly converges to a
traveling wave profile (dashed curves in Fig. 2).

KPP Case. Fig. 2B shows the evolution of the spatial structure of
the solution uðt; xÞ of Eq. 1 with a KPP growth term. As predicted
by Results 1a and 1b, only the rightmost fraction follows the pro-
pagation to the right of the total population. The mass of the
rightmost fraction, which was initially small, increases linearly
with time. This could be interpreted as a form of surfing. We can
observe that this fraction slowly diffuses into the bulk of the
population, but with a null speed (i.e., sublinearly).

We observe that the spatial structure of the population has a
“vertical pattern,” meaning that the population is highly spatially
structured. Fig. 2B shows that the evolution of this pattern is
slow compared to the rate at which the population propagates.
Actually, because the growth term vkgðuÞ in Eq. 2 is always
positive, the density of the fractions 2;…; N − 1 cannot decrease

to 0 faster than the solution of the heat equation ∂tv ¼ ∂xxv (i.e.,
cannot decrease faster than the order 1∕

ffiffi
t

p
).

Allee Case.With the Allee growth function in Eq. 4, the numerical
results of Fig. 2C and Fig. 2D show that the theoretical predic-
tions of Results 2a and 2b remain qualitatively true when u0 is
compactly supported. In particular, the stronger the Allee effect
is, the more the fractions situated deep in the core of the popula-
tion contribute to the wave.

The rightmost fraction remains the most represented in the
colonization front. However, contrary to the KPP case, all the
other fractions are conserved in the colonization front, leading to
a spatial structure of the population with a “horizontal pattern.”

Discussion
Using a mathematical model commonly recognized in the litera-
ture as a robust descriptor of a population colonizing an empty
space (2–4), we showed that the presence of an Allee effect dras-
tically modifies genetic diversity in the colonization front. When
an Allee effect is present, all of the fractions of a population are
conserved in the colonization front, even if their proportions
differ according to their initial distribution. In the absence of
an Allee effect, only the furthest forward fraction in the initial
population eventually remains in the colonization front, indicat-
ing a strong erosion of diversity due to the demographic advan-
tage of isolated individuals ahead of the colonization front.
Under this classical KPP model, any fraction except that located
at the head of the front vanishes progressively; this shows that the
“enhanced transport” of neutral fractions described by Vlad et. al
(28) for similar equations is only a transient phenomenon.

These results diversify the commonly held perspective that the
Allee effect possesses net adverse consequences. This perspective
is inherited from demographic studies of range expansion, which
demonstrate that an Allee effect reduces the speed of coloniza-
tion (23, 35) and can even stop it in heterogeneous environments
(24). Reducing the growth rate of the individuals ahead of the
colonization front simultaneously reduces the speed of coloniza-
tion and enables a diversity of genes coming from the core of the
population to remain on the front, as demonstrated by Result 2a
and the formula in Eq. 9. Other mechanisms that reduce the
growth rate of the individuals ahead of the front should also result
in greater conservation of the genetic diversity of a population.
For instance, Pluess (36) demonstrated how a retreating glacier
limited the spread of a population of European larch, thereby
functioning as an extreme Allee effect where all of the seeds
falling on the icecap die. Given our results, this should lead to
high genetic diversity in the colonization front, which was actually
observed (36). The Allee effect could be a partial or alternative
explanation to the argument of long-distance mixing of genes ad-
vanced in ref. 36. Our results are also consistent with the findings in
ref. 37, which showed that the existence of a juvenile phase (i.e., a
nonreproductive life-stage) in the life-cycle of an organism can
lead to higher levels of genetic diversity. Although the juvenile
phase does not generate an Allee effect in the strictest sense, it
slows down the colonization process in a similar way, thus enabling
an accumulation of genetic diversity in the colonization front.

The Allee effect also affects the spatial distribution of diver-
sity. As Fig. 2 C and D illustrate, this effect leads to a “horizontal
pattern” of genetic diversity (i.e., an absence of genetic differen-
tiation in space), and Result 2b shows that, after the population
has reached its maximum capacity, this pattern diffuses in the
opposite direction within the core of the population. Conversely,
we observed a “vertical pattern” of genetic diversity in the ab-
sence of an Allee effect (i.e., a strongly structured spatial distri-
bution of population fractions; see Fig. 2B). This genetic
structure eventually attenuates due to diffusion in the saturated
population, and each fraction becomes negligible. However, in
both cases the diffusion in the saturated population occurs at

Fig. 2. Evolution of the spatial structure of the solution uðt; xÞ of Eq. 1.
(A) Initial distribution of the fractions; (B) spatial structure of the colonization
wave uðt; xÞ with the KPP growth term fðuÞ ¼ uð1 − uÞ; (C and D) spatial
structure of the colonization wave uðt; xÞ with the growth term fðuÞ ¼
uð1 − uÞðu − ρÞ. In each case, the dashed black curve corresponds to the pro-
file U of the stable traveling wave solution of Eq. 1.
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a much lower rate than the rate of colonization (sublinear diffu-
sion vs. linear propagation). These two time-scales are consistent
with the results obtained in ref. 13 with a stepping-stone model.

Genetic drift is not taken into account in our forward-time
approach, and this is an important difference between this study
and (25). In (25), the dominant role of genetic drift eventually
leads to the fixation of a single gene in the colonization front,
leading to a total loss of diversity. However, consistent results
are obtained from their backward-time approach. In the absence
of stochastic genetic drift, the deterministic evolution of the al-
lelic densities does not depend on the distribution of the alleles
within and among diploid individuals (38). Our results can there-
fore be applied to the dynamics of genetic diversity in haploid as
well as diploid populations.

Our forward-time approach also underlines the ambiguity in
the definition of the surfing phenomenon. Surfing can be asso-
ciated with either (i) a rare gene becoming drastically dominant
in the front or, (ii) with a gene initially present on the front being
propagated alongside others present in the front. These two de-
finitions lead to contradictory results, as with definition (i), gene
surfing is only possible without an Allee effect and for the furthest
forward fraction of the front, and definition (ii) dictates that gene
surfing is promoted by the Allee effect. In the presence of an
Allee effect, the centroid of any fraction of the front is propa-
gated at speed c∕2, which is consistent with the fact that any frac-
tion spreads between its initial location and the leading point of
the front (5, 16).

From a mathematical standpoint, our study contributes a un-
ique perspective to the extensively studied topic of reaction-
diffusion equations. One of the main features of these equations
is their exhibition of traveling wave solutions that keep a constant
profile. Earlier approaches were concerned with the dynamics
of the total waves, making our study’s mathematical analyzation
of the dynamics of the inside structure of these waves unique.
Our results show that these dynamics are strongly dependent
on the type of growth function f , and seem to be determined
by the pulled-pushed nature of the waves. Conversely, our obser-
vations show that the notions of pulled and pushed solutions can
be defined based on the inside structure of the solutions rather
than on their speed of propagation. This conceptualization of
pushed and pulled solutions, whose mathematical definitions
will be given in a future work, has the advantage of being intuitive
and adaptable to more complex models that do not necessarily
admit traveling wave solutions. For instance, we should now be
able to determine the pushed-pulled nature of the solutions of (i)
integro-differential equations including long-distance dispersal
events and resulting in accelerating waves (39, 40), (ii) reac-
tion-diffusion equations with spatially heterogeneous coefficients
that lead to pulsating or generalized transition waves (41, 42), (iii)
reaction-diffusion equations with forced speed, which have been
used in ref. 43 to study the effects of a shifting climate on the
dynamics of a biological species. These processes are known in
ecology to be determinants of the colonization patterns of many
organisms (2, 7) and their effects on genetic diversity require
further investigation (5).

Appendix A: Proof of Result 1a
The main idea of the proof is to compare the equation satisfied by
v with a homogeneous linear equation, and to compute explicitly
the solution of the linear equation.

Recall that v satisfies Eq. 7. From the KPP assumption, we
know that gðUðx − ctÞÞ ≤ f 0ð0Þ. Thus, a comparison argument
implies that v is smaller than the solution w of the equation:
∂tw ¼ ∂xxwþ wf 0ð0Þ, with the same initial condition wð0; xÞ ¼
v0ðxÞ. This function w can be computed explicitly. Fix A ∈ R and
consider an element x0 þ ct in the moving half-line ½Aþ ct;∞Þ.
Because c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
f 0ð0Þp

, we have:

wðt; x0 þ ctÞ ¼ e
−x0c
2ffiffiffiffiffiffiffi
4πt

p
Z þ∞

−∞
e

cy
2 v0ðyÞe−

ðx0−yÞ2
4t dy: [10]

Finally, because x0 ≥ A and ∫ þ∞
−∞ e

cy
2 v0ðyÞdy < ∞; we get:

wðt; x0 þ ctÞ ≤ e
−Ac
2ffiffiffiffiffiffiffi
4πt

p
Z þ∞

−∞
e

cy
2 v0ðyÞdy → 0 as t → ∞;

and the above convergence is uniform in x0 ∈ ½A;þ∞Þ. Because
0 ≤ vðt; xÞ ≤ wðt; xÞ, this implies the assertion in Result 1a.

Appendix B: Proof of Result 2a
In the moving frame with speed c, the fraction density can be writ-
ten ~vðt; xÞ ¼ vðt; xþ ctÞ. In order to remove the advection terms
that appear in the equation satisfied by ~v, we set v�ðt; xÞ ¼
~vðt; xÞecx∕2. Then, we can check that the function v� is a solution
of a linear equation without advection term:

∂tv� ¼ ∂xxv� þ v�
�
gðUðxÞÞ − c2

4

�
; [11]

with the initial condition v�ð0; xÞ ¼ v0ðxÞecx∕2. In the remaining
part of the proof, we show that v� can be written as the sum of a
stationary function and of a function that converges to 0 exponen-
tially fast as t → ∞.

Note that φðxÞ ¼ ecx∕2UðxÞ is a positive eigenfunction of the
operator that appears in the right hand side of Eq. 11, and that
the associated eigenvalue is 0. The Sturm–Liouville theory im-
plies that 0 is the largest eigenvalue of this operator, the remain-
ing part of the spectrum being located at the left of some negative
constant −μ. Thus, we can write:

v�ðt; xÞ ¼ pφðxÞ þ zðt; xÞ; [12]

where p ∈ R and z is “orthogonal” to φ in the sense that
∫ þ∞
−∞ zðt; xÞφðxÞdx ¼ 0, for each t ≥ 0. Moreover, jzðt; xÞj ≤ Ke−μt,

for some constant K > 0. Multiplying the expression in Eq. 12 at
t ¼ 0 by φ and integrating, we get the expression in Eq. 8 for p.

Finally, we have jv�ðt; xÞ − pφðxÞj ≤ Ke−μt and therefore
j~vðt; xÞ − pUðxÞj ≤ Ke−μt−cx∕2. This shows that ~vðt; xÞ converges
to pUðxÞ uniformly in any moving half-line ½A − c 0t;þ∞Þ with
c 0 ∈ ½0; 2μ∕cÞ. In particular, taking c 0 ¼ 0 and using vðt; xÞ ¼
~vðt; x − ctÞ we obtain that, for any A ∈ R, the fraction density
converges to a proportion p of the total population uðt; xÞ ¼
Uðx − ctÞ, uniformly in the moving half-line ½Aþ ct;þ∞Þ.
Appendix C: Proof of Result 1b
Take any ε > 0. From Result 1a, we already know that for any
A < 0 there exists a time tA > 0 such that 0 < vðt; Aþ ctÞ <
ε∕2 for all t ≥ tA. Again, we place ourselves in the moving frame
with speed c : ~vðt; xÞ ¼ vðt; xþ ctÞ satisfies 0 < ~vðt; AÞ < ε∕2
and satisfies the equation:

∂t ~v ¼ ∂xx ~vþ c∂x ~vþ gðUðxÞÞ~v; t > 0; x ∈ R: [13]

By constructing a super-solution to Eq. 13 close to the solution of the
heat equation, we are going to show that ~v → 0 in ð−∞; A� as t → ∞.

The assumption v0ðxÞ → 0 as x → −∞ implies that, for any
t > 0, ~vðt; xÞ → 0 as x → −∞. In particular, there exists a point
xA < A such that ~vðtA; xÞ ≤ ε∕2 for all x ≤ xA. Thus, in the inter-
val ð−∞; A�, and for times larger than tA, ~v is smaller than the
solution v̄ of:

8><
>:

∂tv̄ ¼ ∂xxv̄þ c∂xv̄þ f ðUðxÞÞ; t ≥ tA; x < A;
v̄ðt; AÞ ¼ ε∕2; t ≥ tA;

v̄ðtA; xÞ ¼
�
1 if x ∈ ðxA; AÞ;
ε∕2 if x ≤ xA:

[14]
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Consider the auxiliary problem

( ∂tv̄1 ¼ ∂xxv̄1 þ c∂xv̄1; t ≥ tA; x ∈ R;

v̄1ðtA; xÞ ¼
�
1 if x ∈ ðxA; AÞ;
ε∕2 if x ≤ xA or x ≥ A:

[15]

Then, v̄1 is simply the solution of the heat equation with an
advection term and can be computed explicitly. In particular,
we have maxx∈Rv̄1ðt; xÞ ≤ ε∕2þC∕

ffiffi
t

p
for some constant

C > 0. Setting jðxÞ ¼ −εx∕ð1 − xÞ for x < 0, we observe that
−j 0 0 − cj 0 is positive and decreases like cε∕x2 as x → −∞. Under
the KPP assumption, it is known (44) that the profile UðxÞ of the
traveling wave converges exponentially to 1 as x → −∞. Using
f ð1Þ ¼ 0 and f 0ð1Þ < 0, this implies that f ðUðxÞÞ converges expo-
nentially to 0 as x → −∞. Thus, if A is chosen negative enough,
f ðUðxÞÞ ≤ −j 0 0ðxÞ − cjðxÞ in ð−∞; A�. The parabolic maximum
principle then shows that v̄1ðt; xÞ þ jðxÞ ≥ v̄ðt; xÞ in ð−∞; A�,
for all t ≥ tA. We finally get:

εþC∕
ffiffi
t

p
≥ v̄1ðt; xÞ þ jðxÞ ≥ v̄ðt; xÞ ≥ ~vðt; xÞ; [16]

for all t ≥ tA, x ∈ ð−∞; A�. Thus, vðt; xÞ ≤ εþC∕
ffiffi
t

p
in ð−∞; Aþ

ct� for all t ≥ tA.

Appendix D: Proof of Result 2b
From Result 2a, we know that for any A ∈ R there exists a time
tA such that jvðt; Aþ ctÞ − pUðAÞj < ε∕4 for all t ≥ tA. Thus, ifA
is negative enough, because Uð−∞Þ ¼ 1, we have jvðt; Aþ ctÞ −
pj < ε∕3 for t ≥ tA. Using the same arguments as in the proof of

Result 1b, we can show that vðt; xÞ is smaller than pþ ε in the
half-line ð−∞; Aþ ct� for t large enough.

In order to construct a lower bound for v, we construct an
appropriate subsolution. First, one can choose A < 0 such that
f ðUðxÞÞ ≥ 0 for all x ≤ A. Then, setting

( ∂tv ¼ ∂xxvþ c∂xv; t ≥ tA; x ∈ R;

vðtA; xÞ ¼
�
0 if x ≤ A;
p − ε∕2 if x ≥ A;

[17]

a comparison argument implies that ~vðt; xÞ ¼ vðt; xþ ctÞ is larger
than vðt; xÞ for all t ≥ tA and x ≤ A. Again, Eq. 17 simply corre-
sponds to the heat equation with an advection term, and its solu-
tion can be computed explicitly. For any t > tA, the function vðt; ·Þ
is increasing and therefore vðtþ tA; xÞ ≥ vðtþ tA; c 0ðtþ tAÞ−
ct − BÞ for all t > 0, B ≥ 0 and x ≥ c 0ðtþ tAÞ − ct − B, which
gives:

vðtþ tA; xÞ ≥
p − ε∕2ffiffiffi

π
p

Z
∞

A−B−c 0 ðtþtAÞ
2
ffi
t

p
e−z

2

dz:

As a consequence, if 0 < c 0 < c, vðt; xÞ is larger than p − ε in
ðc 0t; Aþ ctÞ for t large enough. We also observe (with c 0 ¼ 0) that
vðt; xÞ is larger than p∕2 − ε in ½−B; Aþ ctÞ for t large enough.
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